

Alternative Commercial Laundry Systems

Poised for Big Energy Savings

Mary Horsey Associate Director Technology Assessment, E Source

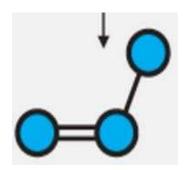
Utility Energy Forum, 2015

A New Dawn for Commercial Laundry Efficiency

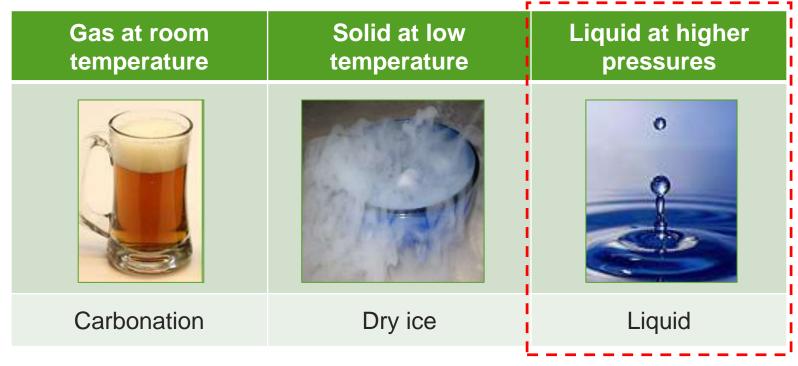


New Technologies on the Rise...

Liquid carbon dioxide (CO₂)

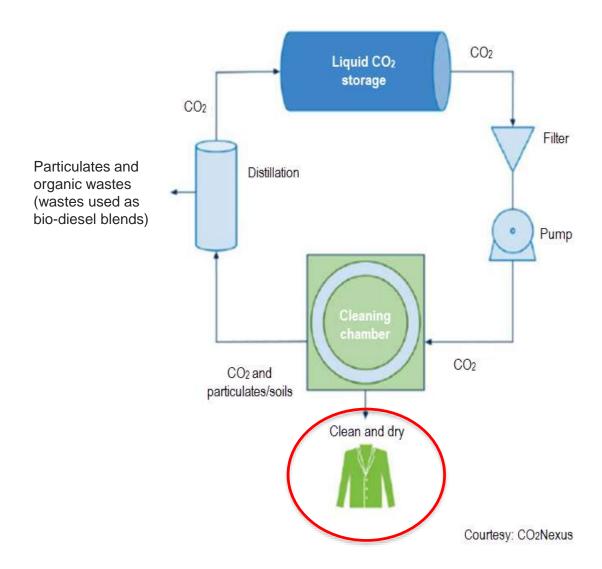


And an old technology is being revived


Ozone

Liquid CO₂

What's Liquid CO,?


Courtesy (left to right): Scott A. Miller, Mr. Thomas, and Michael Melgar

Solvent properties of CO₂:

- Lower viscosity and surface tension
- Improved small-pore penetration
- Cleans better and more quickly

How the Process Works

Comparing Apples to Apples

Baseline Standard Commercial System

Washer

Equipment

Electricity (ongoing)

Water for wash (ongoing)

Water treatment

Equipment

Chemicals (ongoing)

Pump energy (ongoing)

Water heating (natural gas)

Detergents (ongoing)

Water for rinse (ongoing)

Dryer

Equipment

Electricity (ongoing)

Natural gas (ongoing)

CO₂ System

Washer, compressor, and pumps

Equipment

Electricity (ongoing)

CO₂ (one-time)

Liquid CO₂ Savings

Annual

process consumption

4 million 444	0	100%
444		
	200	33%
667	300	22%
30,000 (disposed of in municipal water system)	9,000	70%
50+ cycles	2 to 3 times longer life	NA
ľ	municipal water system)	municipal water system) 50+ cycles 2 to 3 times

Note: Based on 1.2 million pounds of garments throughput per year.

© E Source; data from CO₂Nexus

Economics and Applications

- Simple payback period target of 2 to 4 years
 - Laundry-as-a-service: \$/lb basis
 - Application- or market-specific
 - Water/energy costs vary geographically

Applications

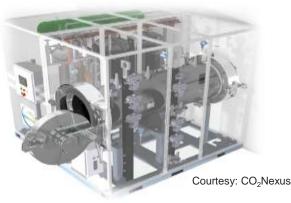
- Hospitality
- Upstream textile processing
- Coated fabrics and garments
- Oil and gas
- Healthcare
- Dry cleaning

Non-Energy Benefits

- CO₂ is recycled
- Clothes come out dry
- No secondary waste stream
- Short cycle times (approximately 20 minutes)
- High throughput
- Increased fabric/garment life
- No shrinkage or color bleeding
- Cleans a wide variety of fabrics
- Non-toxic, non-hazardous, non-flammable, and inexpensive

Source: MS Clipart

Demonstration Project


- Cleanroom garment field test
 - CEC PIER project
 - Aramark Cleaning Services, Los Angeles
 - Testing completed March 2014

Classification based on air particulates

Static-charge control

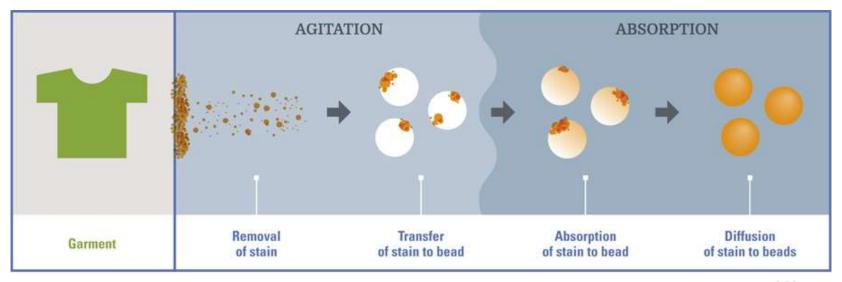
Minimal biological contamination

Results

CO₂ System **Advantages**

60% fewer particles

Reduced static buildup


25% less bioburden

Polymer Beads

How Polymer Beads Clean and Work

© E Source

Polymer beads:

- Spheroidal
- The size of BBs
- 1:2 mass ratio of laundry to beads
- Expand with moisture
- Polarized with special additive

The Process:

- Beads enter drum of specially made machine
- Polarizing additive added
- Agitate with fabrics
- Beads lift and absorb stains
- Beads exit drum for reuse
- No treatment of beads necessary

Why Polymer Bead Is Better

Courtesy: Liberty Utilities

- Heat
- Half the detergent
- Less time
- Reduced drying*

Source: MS Clipart

Liberty Utilities Laundry Study

Courtesy: bartek3_14

Source: MS Clipart

Procedure

- Two machines
 - Milnor (baseline)
 - Xeros (polymer bead)
- Three types of fabrics
 - Bath towels
 - White linens
 - Colored linens
- Same loads
 - 60 pounds
- Measured
 - Water
 - Therms
 - Run time
 - Electricity

Big Savings

Per load	Milnor (baseline)	Xeros (polymer bead)	Savings
Time (minutes)	54 to 78	50 to 51	4 to 26
Water (gallons)	134 to 156	35 to 37	80%
Therms	1.02 to 1.59	0	100%
Electricity	2 kWh	3 kWh	-4,600 kWh ^a

Notes: kWh = kilowatt-hours.

a. total additional electricity use in a year (compared to baseline).

© E Source

Source: MS Clipart

Non-Energy Benefits

- Gentler on fabrics
- No sorting colors
- Improved cleaning
- No bleach

Economics

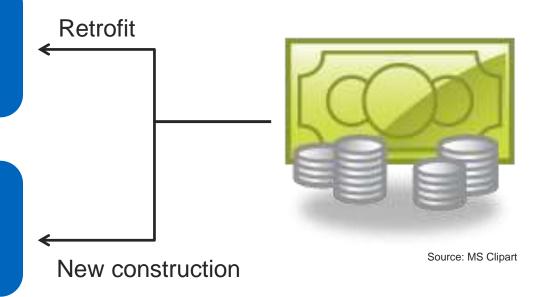
Total system cost: \$56,000

Incentives from Liberty Utilities, National Grid, Unitil, Public Service of New Hampshire, NSTAR, and **New Hampshire**

- New construction
 - 75% incremental cost (\$25,612)
- Retrofit
 - 50% cost (\$28,000)

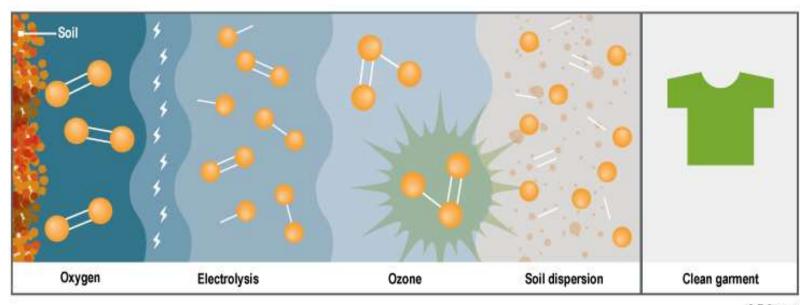
Source: MS Clipart

Economics (cont.)

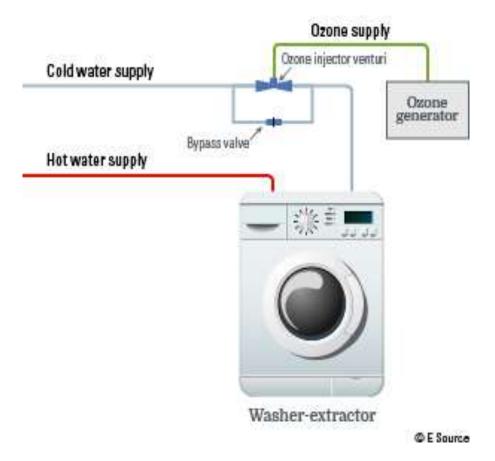

Approximate simple payback periods

Without incentive = **10 years**

With incentive = 5 years


Without incentive = **10 years**

OZONE


How Does Ozone Clean?

© E Source

- Chemically reacts with soil molecules
- Breaks soils into smaller molecules
- Water-soluble soils released and removed via agitation

How the Process Works

- New or existing washer
- Ozone produced in generator
- Injected into cold water supply
- Ozone is reduced to oxygen (O₂) during wash process

Field Test Results: % Savings

	PNNL/Navigant	PNNL/Navigant	PG&E	Santa Barbara County
	Charleston Place Hotel	Rogerson House Asstd Living	Hilton Garden Inn	Santa Barbara County Jail
Natural Gas	65%	63%	66%	88%
Electricity	+ 1.5 kWh/load	+ 38 kWh/month	3.5%	n/a
Water	15%	+19%	31%	19%

Economics

Ozone System Costs

Simple Payback Period

Charleston House

\$42,200

2.8 years

Hilton **Garden Inn**

\$14,000

7.5 months

Source: MS Clipart

Applications

Source: MS Clipart

Source: MS Clipart

Hospitality

Food Service

Healthcare

Laboratories

Cleanrooms

Source: MS Clipart

Source: MS Clipart

Non-Energy Benefits and Concerns

Benefits

- Increased garment life
- Improved effluent quality
- Reduced:
 - Water use
 - Chemical use
 - Cycle time
 - Drying time

Concerns

- Toxic gas code requirements
- British Columbia requires:
 - Special piping
 - Eye-wash station

Resources

Liquid CO₂

Demonstration of a Carbon Dioxide—Based Industrial Laundry Machine (PDF), California Energy Commission (2012)

Polymer Bead

Xeros Laundry Technical Assessment Study (PDF), Liberty Utilities (2014)

Ozone

The Benefits of Ozone in Hospitality On-Premise Laundry Operations (PDF), Pacific Gas and Electric Co. (2009)

Project Test Report: Santa Barbara County Jail Ozone Laundry Detergent (PDF), Southern California Gas Co. (2011)

Resources

Ozone

Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare - Ozone Based Laundry Systems (PDF), US DOE (Navigant Consulting, PNNL, Efficiency Solutions), (2014)

For More Information

Mary Horsey Associate Director Technology Assessment Service, E Source 303-345-9160 <u>mary_horsey@esource.com</u>

Questions?